Το ορθό πρίσμα και τα στοιχεία του
Στο φυσικό κόσμο τα αντικείμενα των διπλανών σχημάτων μάς δίνουν την έννοια του ορθού πρίσματος. Στη Στερεομετρία τα παρακάτω στερεά σώματα ονομάζονται ορθά πρίσματα. Στη συνέχεια, τα ορθά πρίσματα θα τα λέμε απλά πρίσματα.
Κάθε πρίσμα έχει:
δύο έδρες παράλληλες, που είναι ίσα πολύγωνα και τις άλλες έδρες του που είναι ορθογώνια παραλληλόγραμμα και ονομάζονται παράπλευρες έδρες.
Οι δύο παράλληλες έδρες του λέγονται βάσεις του πρίσματος.
Οι παράπλευρες έδρες σχηματίζουν την παράπλευρη επιφάνεια του πρίσματος. Οι πλευρές των εδρών του πρίσματος ονομάζονται ακμές.
Η απόσταση των δύο βάσεων, που είναι ίση με το ύψος μιας παράπλευρης έδρας, λέγεται ύψος του πρίσματος.
Αν οι βάσεις του πρίσματος είναι τρίγωνο, τετράπλευρο, πεντάγωνο κ.ο.κ, τότε αντίστοιχα το πρίσμα λέγεται τριγωνικό, τετραπλευρικό, πενταγωνικό κ.ο.κ.
Δύο από τα βασικότερα ορθά πρίσματα είναι ο κύβος και το ορθογώνιο παραλληλεπίπεδο.
Εμβαδόν επιφάνειας πρίσματος
Στο παρακάτω σχήμα βλέπουμε τη διαδικασία ανάπτυξης και το τελικό ανάπτυγμα της επιφάνειας ενός πρίσματος. Ως ανάπτυγμα της επιφάνειας ενός πρίσματος θεωρούμε το επίπεδο σχήμα που προκύπτει αν «ξεδιπλώσουμε» την παράπλευρη επιφάνειά του και τις βάσεις του.
Η παράπλευρη επιφάνεια σχηματίζει ένα ορθογώνιο, που η μία διάστασή του είναι η περίμετρος της βάσης και η άλλη το ύψος του πρίσματος. |
|
Το εμβαδόν της παράπλευρης επιφάνειας ενός πρίσματος ισούται με το γινόμενο της περιμέτρου της βάσης του επί το ύψος του πρίσματος. Δηλαδή:
Επ = (περίμετρος βάσης) • (ύψος) |
Φυσικά, για να βρούμε το ολικό εμβαδόν, πρέπει να προσθέσουμε και τα εμβαδά των δύο βάσεων.
Το ολικό εμβαδόν ενός πρίσματος (Εολ) είναι το άθροισμα του εμβαδού της παράπλευρης επιφάνειας Επ και των εμβαδών Εβ των δύο βάσεων. Δηλαδή:
Εολ = Επ + 2Εβ
|
Κύλινδρος
Τα παρακάτω στερεά δίνουν την έννοια του κυλίνδρου.
Ένας κύλινδρος αποτελείται από δύο ίσους και παράλληλους κυκλικούς δίσκους, που είναι οι βάσεις του, και την παράπλευρη επιφάνεια, που, αν την ξετυλίξουμε, θα δούμε ότι έχει σχήμα ορθογωνίου.
Η απόσταση των δύο βάσεων λέγεται ύψος του κυλίνδρου. |
|
Εμβαδόν επιφάνειας κυλίνδρου
Ας θεωρήσουμε το ανάπτυγμα ενός κυλίνδρου. Είναι φανερό ότι το εμβαδόν της παράπλευρης επιφάνειας του κυλίνδρου ισούται με το εμβαδόν του ορθογωνίου που σχηματίζεται, οπότε ισούται με το γινόμενο της περιμέτρου της βάσης επί το ύψος του κυλίνδρου.
Η περίμετρος της βάσης ισούται με το μήκος του κύκλου, δηλαδή 2πρ.
Το εμβαδόν Επ της παράπλευρης επιφάνειας ενός κυλίνδρου ισούται με την περίμετρο της βάσης (που είναι ίση με 2πρ) επί το ύψος του κυλίνδρου. Δηλαδή
Επ = (περίμετρος βάσης) • (ύψος) ή Επ =2πρ • υ |
Φυσικά, για να βρούμε το ολικό εμβαδόν του κυλίνδρου, πρέπει στο εμβαδόν της παράπλευρης επιφάνειας να προσθέσουμε τα εμβαδά των δύο βάσεων.
Το ολικό εμβαδόν Εολ ενός κυλίνδρου ισούται με το εμβαδόν της παράπλευρης επιφάνειας Επ και τα εμβαδά Εβ των δύο βάσεων. Δηλαδή:
Εολ = Επ + 2Εβ |
|